New 125I brachytherapy source IsoSeed I25.S17plus: Monte Carlo dosimetry simulation and comparison to sources of similar design
نویسندگان
چکیده
PURPOSE To determine the relative dose rate distribution around the new (125)I brachytherapy source IsoSeed I25.S17plus and report results in a form suitable for clinical use. Results for the new source are also compared to corresponding results for other commercially available (125)I sources of similar design. MATERIAL AND METHODS Monte Carlo simulations were performed using the MCNP5 v.1.6 general purpose code. The model of the new source was prepared from information provided by the manufacturer and verified by imaging a sample of ten non-radioactive sources. Corresponding simulations were also performed for the 6711 (125)I brachytherapy source, using updated geometric information presented recently in the literature. The uncertainty of the dose distribution around the new source, as well as the dosimetric quantities derived from it according to the Task Group 43 formalism, were determined from the standard error of the mean of simulations for a sample of fifty source models. These source models were prepared by randomly selecting values of geometric parameters from uniform distributions defined by manufacturer stated tolerances. RESULTS AND CONCLUSIONS Results are presented in the form of the quantities defined in the update of the Task Group 43 report, as well as a relative dose rate table in Cartesian coordinates. The dose rate distribution of the new source is comparable to that of sources of similar design (IsoSeed I25.S17, Oncoseed 6711, SelectSeed 130.002, Advantage IAI-125A, I-Seed AgX100, Thinseed 9011). Noticeable differences were observed only for the IsoSeed I25.S06 and Best 2301 sources.
منابع مشابه
Experimental determination of the Task Group-43 dosimetric parameters of the new I25.S17plus (125)I brachytherapy source.
PURPOSE To present experimental dosimetry results for the new IsoSeed I25.S17plus (125)I brachytherapy source, in fulfillment of the American Association of Physicists in Medicine recommendation for, at least one, experimental dosimetry characterization of new low-energy seeds before their clinical implementation. METHODS AND MATERIALS A batch of 100 LiF thermoluminescent dosimeter (TLD)-100 ...
متن کاملComparison of dosimetry parameters of two commercially available Iodine brachytherapy seeds using Monte Carlo calculations
Background: Iodine brachytherapy sources with low photon energies have been widely used in treating cancerous tumors. Dosimetric parameters of brachytherapy sources should be determined according to AAPM TG-43U1 recommendations before clinical use. Monte Carlo codes are reliable tools in calculation of these parameters for brachytherapy sources. Materials and Methods: Dosimetric param...
متن کاملDetermination of Dosimetric characteristics of a New 192Ir-PDR Brachytherapy Source According to AAPM TG- 43 Protocol using Monte Carlo simulation technique
Introduction: 192Ir is one of the important sources frequently used in brachytherapy. Up to now, a lot of commercial models of this source have been made which Ir-192 has been recently added to them. The aim of the present study is to determine the dosimetric parameters of this new source model based on the recommendations of TG-43(U1) protocol using Monte Carlo simulation tech...
متن کاملDosimetry Comparison of Water Phantom and Complete Eye Definition for 125I and 103Pd Brachytherapy Plaques
Introduction: In this paper, by complete definition of human eye containing the various parts and their materials, the difference between this model and a homogeneous water phantom are compared for two ophthalmic plaques using 125I and 103Pd. Material and methods: The simulation of the two phantoms were performed in the MCNP-4C code and by using the geometry of a three-dimensional eye, differen...
متن کاملDosimetric characterization of a high dose rate 192I source for brachytherapy application using Monte Carlo simulation and benchmarking with thermoluminescent dosimetry
Background: The purpose of this project was to derive the brachytherapy dosimetric functions described by American Association of Physicists in Medicine (AAPM) TG-43 U1 based on high dose rate 192I sources. Materials and Methods: The method utilized included both simulation of the designed Polymethyl methacrylate (PMMA) phantom using the Monte Carlo of MCNP4C and benchmarking of the simulation ...
متن کامل